# Author: Carsten Sachse 18-Feb-2011
# Copyright: EMBL (2010 - 2018), Forschungszentrum Juelich (2019 - 2021)
# License: see license.txt for details
"""
Program to plot refinement parameters from segmentrefine3d
"""
import os
import shutil
from spring.csinfrastr.csdatabase import RefinementCycleTable, SpringDataBase, refine_base, SegmentTable, \
RefinementCycleSegmentTable, RefinementCycleSegmentSubunitTable
from spring.csinfrastr.csfeatures import Features
from spring.csinfrastr.cslogger import Logger
from spring.csinfrastr.csreadinput import OptHandler
from spring.segment2d.segmentplot import SegmentPlotPar, SegmentPlotGui, SegmentPlot
from spring.segment2d.segmentselect import SegmentSelect
from spring.segment3d.refine.sr3d_main import SegmentRefine3d
import sys
from PyQt5.QtWidgets import QApplication
from sqlalchemy.sql.expression import desc
import numpy as np
[docs]class SegRefine3dPlotPar(SegmentPlotPar):
"""
Class to initiate default dictionary with input parameters including help and range values and
status dictionary
"""
def __init__(self):
# package/program identity
self.package = 'emspring'
self.progname = 'segrefine3dplot'
self.proginfo = __doc__
self.code_files = [self.progname]
self.segrefine3dplot_features = Features()
self.feature_set = self.segrefine3dplot_features.setup(self)
self.define_parameters_and_their_properties()
self.define_program_states()
[docs] def define_parameters_and_their_properties(self):
self.feature_set = self.segrefine3dplot_features.set_inp_refinement_path(self.feature_set)
self.feature_set = self.segrefine3dplot_features.set_interactive_vs_batch_mode(self.feature_set)
self.feature_set = self.segrefine3dplot_features.set_diagnostic_prefix(self.feature_set, 'intermediate', 'Batch mode')
self.feature_set = self.set_inp_spring_path(self.feature_set)
# self.feature_set = self.set_refinement_cycle(self.feature_set)
self.feature_set = self.set_ref_quantities_to_be_plotted(self.feature_set)
self.feature_set = self.set_set_size(self.feature_set)
self.feature_set = self.segrefine3dplot_features.set_micrograph_and_helix_selection_criteria(self.feature_set)
[docs] def define_program_states(self):
self.feature_set.program_states['get_ref_quantities_per_set']='Extract desired refinement quantities from spring database'
self.feature_set.program_states['plot_data_on_figure']='Prepare figures with desired refined quantities'
[docs] def set_refinement_cycle(self, feature_set):
inp3 = 'Iteration cycle'
feature_set.parameters[inp3] = int(5)
feature_set.hints[inp3] = 'Iteration cycle to be analyzed.'
feature_set.properties[inp3] = feature_set.Range(1, 1000, 1)
feature_set.level[inp3]='intermediate'
return feature_set
[docs] def set_ref_quantities_to_be_plotted(self, feature_set):
inp3 = 'Refinement quantities'
feature_set.parameters[inp3]=str('coordinates')
feature_set.properties[inp3]=feature_set.choice_properties(2, ['coordinates', 'coordinates_subunit',
'in-plane_rotation', 'normalized_in-plane_rotation', 'out-of-plane_tilt', 'phi', 'theta', 'psi', 'x_shift',
'y_shift', 'shift_perpendicular_to_helix', 'shift_along_helix', 'ccc_peak'], 'QComboBox')
feature_set.hints[inp3]=SpringDataBase().get_hints_from_ref_segment_table(feature_set.properties[inp3].choices)
feature_set.level[inp3]='beginner'
return feature_set
[docs]class SegRefine3dPlotPreparation(object):
"""
* Class that holds functions for examining segments from micrographs
* __init__ Function to interpret multi-input parameters
"""
def __init__(self, parset = None):
self.log = Logger()
if parset is not None:
self.feature_set = parset
p = self.feature_set.parameters
self.infile = p['refinement.db file']
self.outfile_prefix = p['Diagnostic plot prefix']
self.spring_file = p['spring.db file']
self.quantities = p['Refinement quantities']
self.batch_mode = p['Batch mode']
self.set_size = p['Set size']
self = SegmentSelect().define_mics_and_helices_selection(self, p)
[docs] def check_ref_values_and_raise_error(self, quantities, y_plot):
if y_plot[0] is None:
msg = '{0} entry does not exist in specified refinement.db. '.format(quantities) + \
'Re-run segmentrefine3d to save relevant information.'
raise ValueError(msg)
[docs] def get_labels_according_to_ref_quantities(self, set_size, quantities):
"""
>>> from spring.segment3d.segrefine3dplot import SegRefine3dPlot
>>> SegRefine3dPlot().get_labels_according_to_ref_quantities('helix', 'coordinates') #doctest: +NORMALIZE_WHITESPACE
['Stack_id', 'Refined X-Coordinate (Angstrom)', 'Refined Y-Coordinate (Angstrom)',
'Picked X-Coordinate (Angstrom)', 'Picked Y-Coordinate (Angstrom)',
'Selected refined X-Coordinate (Angstrom)', 'Selected refined Y-Coordinate (Angstrom)']
>>> SegRefine3dPlot().get_labels_according_to_ref_quantities('helix', 'in-plane_rotation') #doctest: +NORMALIZE_WHITESPACE
['Stack_id', 'Distance Along Helix (Angstrom)', 'In-Plane Rotation Angle (Degrees)',
'Selected In-Plane Rotation Angle (Degrees)', 'Local Average In-Plane Rotation Angle (Degrees)']
>>> SegRefine3dPlot().get_labels_according_to_ref_quantities('helix', 'normalized_in-plane_rotation') #doctest: +NORMALIZE_WHITESPACE
['Stack_id', 'Distance Along Helix (Angstrom)', 'Normalized In-Plane Rotation Angle (Degrees)',
'Selected Normalized In-Plane Rotation Angle (Degrees)']
>>> SegRefine3dPlot().get_labels_according_to_ref_quantities('helix', 'coordinates_subunit') #doctest: +NORMALIZE_WHITESPACE
['Stack_id', 'Refined subunit X-Coordinate (Angstrom)', 'Refined subunit Y-Coordinate (Angstrom)',
'Picked X-Coordinate (Angstrom)', 'Picked Y-Coordinate (Angstrom)', 'Selected refined X-Coordinate (Angstrom)',
'Selected refined Y-Coordinate (Angstrom)']
"""
labels = ['Stack_id']
if set_size == 'helix' and not quantities.startswith('coordinates'):
labels += SpringDataBase().get_labels_from_table(SegmentTable, 'distance_from_start_A')
elif quantities.startswith('coordinates'):
coord_labels = SpringDataBase().get_labels_from_table(SegmentTable, 'x_coordinate_A',
'y_coordinate_A')
if quantities.endswith('coordinates'):
ref_labels = ['Refined {0}'.format(each_coord_label) for each_coord_label in coord_labels]
else:
ref_labels = ['Refined subunit {0}'.format(each_coord_label) for each_coord_label in coord_labels]
sel_labels = ['Selected refined {0}'.format(each_coord_label) for each_coord_label in coord_labels]
coord_labels = ['Picked {0}'.format(each_coord_label) for each_coord_label in coord_labels]
labels += ref_labels + coord_labels + sel_labels
if quantities == 'phi':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'phi')
elif quantities == 'theta':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'theta')
elif quantities == 'psi':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'psi')
elif quantities == 'in-plane_rotation':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'inplane_angle',
'lavg_inplane_angle')
elif quantities == 'normalized_in-plane_rotation':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'norm_inplane_angle')
elif quantities == 'out-of-plane_tilt':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'out_of_plane_angle',
'lavg_out_of_plane')
elif quantities == 'x_shift':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'shift_x_A')
elif quantities == 'y_shift':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'shift_y_A')
elif quantities == 'shift_perpendicular_to_helix':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'helix_shift_x_A',
'lavg_helix_shift_x_A')
elif quantities == 'shift_along_helix':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'helix_shift_y_A')
elif quantities == 'ccc_peak':
labels += SpringDataBase().get_labels_from_table(RefinementCycleSegmentTable, 'peak')
if set_size == 'helix' and not quantities.startswith('coordinates'):
labels += ['Selected {0}'.format(labels[2])]
if set_size == 'helix' and quantities in ['in-plane_rotation', 'out-of-plane_tilt',
'shift_perpendicular_to_helix']:
labels = labels[:-2] + [labels[-1]] + [labels[-2]]
return labels
[docs] def get_refinement_cycle_id(self, infile):
shutil.copy(infile, os.path.basename(infile))
ref_session = SpringDataBase().setup_sqlite_db(refine_base, os.path.basename(infile))
last_cycle = ref_session.query(RefinementCycleTable).order_by(desc(RefinementCycleTable.id)).first()
return ref_session, last_cycle
[docs]class SegRefine3dPlotDataRetrieval(SegRefine3dPlotPreparation):
[docs] def get_x_and_y_coordinates_from_helix_segments(self, each_helix_segments, each_helix_ref_segments,
excluded_segments):
x_coord = np.array([each_helix_segment.picked_x_coordinate_A for each_helix_segment in each_helix_segments])
y_coord = np.array([each_helix_segment.picked_y_coordinate_A for each_helix_segment in each_helix_segments])
stack_ids = np.array([each_helix_segment.stack_id for each_helix_segment in each_helix_segments])
ref_stack_ids = np.array([each_helix_ref_segment.stack_id for each_helix_ref_segment in each_helix_ref_segments])
ref_all_x_shifts = np.zeros(len(stack_ids))
ref_x_shifts = np.array([each_helix_ref_segment.shift_x_A for each_helix_ref_segment in each_helix_ref_segments])
ref_all_x_shifts[stack_ids.searchsorted(ref_stack_ids)] = ref_x_shifts
ref_x_coord = x_coord + ref_all_x_shifts
ref_all_y_shifts = np.zeros(len(stack_ids))
ref_y_shifts = np.array([each_helix_ref_segment.shift_y_A for each_helix_ref_segment in each_helix_ref_segments])
ref_all_y_shifts[stack_ids.searchsorted(ref_stack_ids)] = ref_y_shifts
ref_y_coord = y_coord + ref_all_y_shifts
# ref_x_coord = x_coord + np.array([each_helix_ref_segment.shift_x_A for each_helix_ref_segment in
# each_helix_ref_segments])
# ref_y_coord = y_coord + np.array([each_helix_ref_segment.shift_y_A for each_helix_ref_segment in
# each_helix_ref_segments])
sel_x_coord = np.array(np.ma.masked_array(x_coord, mask=excluded_segments).tolist(), dtype=float)
sel_y_coord = np.array(np.ma.masked_array(y_coord, mask=excluded_segments).tolist(), dtype=float)
sel_ref_x_coord = np.array(np.ma.masked_array(ref_x_coord, mask=excluded_segments).tolist(), dtype=float)
sel_ref_y_coord = np.array(np.ma.masked_array(ref_y_coord, mask=excluded_segments).tolist(), dtype=float)
return x_coord, y_coord, ref_x_coord, ref_y_coord, sel_x_coord, sel_y_coord, sel_ref_x_coord, sel_ref_y_coord
[docs] def get_refined_quantities_from_segments(self, quantities, each_helix_ref_segments):
if quantities == 'normalized_in-plane_rotation':
y_plot = [each_helix_ref_segment.norm_inplane_angle for each_helix_ref_segment in each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'phi':
y_plot = [each_helix_ref_segment.phi for each_helix_ref_segment in each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'theta':
y_plot = [each_helix_ref_segment.theta for each_helix_ref_segment in each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'psi':
y_plot = [each_helix_ref_segment.psi for each_helix_ref_segment in each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'x_shift':
y_plot = [each_helix_ref_segment.shift_x_A for each_helix_ref_segment in each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'y_shift':
y_plot = [each_helix_ref_segment.shift_y_A for each_helix_ref_segment in each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'shift_along_helix':
y_plot = [each_helix_ref_segment.helix_shift_y_A for each_helix_ref_segment in each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'ccc_peak':
y_plot = [each_helix_ref_segment.peak for each_helix_ref_segment in each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
else:
y_plot = None
return y_plot
[docs] def get_refined_subunit_coordinates(self, session, ref_session, each_helix_ref_segments):
sub_xcoord = np.array([])
sub_ycoord = np.array([])
subunit_stack_ids = np.array([])
for each_ref_segment in each_helix_ref_segments:
each_ref_subunits = ref_session.query(RefinementCycleSegmentSubunitTable).\
filter(RefinementCycleSegmentSubunitTable.ref_seg_id == each_ref_segment.id).all()
each_segment = session.query(SegmentTable).get(each_ref_segment.stack_id + 1)
sub_xcoord = np.append(sub_xcoord, each_segment.picked_x_coordinate_A + \
np.array([each_subunit.shift_x_A for each_subunit in each_ref_subunits]))
sub_ycoord = np.append(sub_ycoord, each_segment.picked_y_coordinate_A + \
np.array([each_subunit.shift_y_A for each_subunit in each_ref_subunits]))
subunit_stack_ids = np.append(subunit_stack_ids, np.array([each_ref_segment.stack_id for each_subunit in
each_ref_subunits]))
return subunit_stack_ids, sub_xcoord, sub_ycoord
[docs] def prepare_data_for_table_display(self, each_helix_stack_ids, x_coord, y_coord, sel_ref_x_coord, sel_ref_y_coord,
each_helix_su_stack_ids, sub_xcoord, sub_ycoord):
filled_x_coord = np.zeros(len(sub_xcoord))
filled_y_coord = np.zeros(len(sub_ycoord))
filled_ref_x_coord = np.zeros(len(sub_xcoord))
filled_ref_y_coord = np.zeros(len(sub_ycoord))
each_helix_stack_ids = np.array(each_helix_stack_ids)
for each_unique_stack_id in each_helix_stack_ids:
filled_x_coord[each_helix_su_stack_ids == each_unique_stack_id] = \
x_coord[each_helix_stack_ids == each_unique_stack_id]
filled_y_coord[each_helix_su_stack_ids == each_unique_stack_id] = \
y_coord[each_helix_stack_ids == each_unique_stack_id]
filled_ref_x_coord[each_helix_su_stack_ids == each_unique_stack_id] = \
sel_ref_x_coord[each_helix_stack_ids == each_unique_stack_id]
filled_ref_y_coord[each_helix_su_stack_ids == each_unique_stack_id] = \
sel_ref_y_coord[each_helix_stack_ids == each_unique_stack_id]
return each_helix_stack_ids, filled_x_coord, filled_y_coord, filled_ref_x_coord, filled_ref_y_coord
[docs] def add_picked_coordinates_of_exluded_segments(self, each_helix_stack_ids, excluded_segments, x_coord, y_coord,
each_helix_su_stack_ids, sub_xcoord, sub_ycoord, filled_x_coord, filled_y_coord, filled_ref_x_coord,
filled_ref_y_coord):
excl_x_coord = np.ma.masked_array(x_coord, mask=np.invert(excluded_segments)).compressed()
excl_y_coord = np.ma.masked_array(y_coord, mask=np.invert(excluded_segments)).compressed()
excl_stack_ids = np.ma.masked_array(each_helix_stack_ids, mask=np.invert(excluded_segments)).compressed()
for each_ex_id, each_ex_refx, each_ex_refy in zip(excl_stack_ids, excl_x_coord, excl_y_coord):
each_helix_su_stack_ids = np.append(each_helix_su_stack_ids, each_ex_id)
sub_xcoord = np.append(sub_xcoord, np.nan)
sub_ycoord = np.append(sub_ycoord, np.nan)
filled_x_coord = np.append(filled_x_coord, each_ex_refx)
filled_y_coord = np.append(filled_y_coord, each_ex_refy)
filled_ref_x_coord = np.append(filled_ref_x_coord, np.nan)
filled_ref_y_coord = np.append(filled_ref_y_coord, np.nan)
return each_helix_su_stack_ids, sub_xcoord, sub_ycoord, filled_x_coord, filled_y_coord, filled_ref_x_coord, filled_ref_y_coord
[docs] def get_coordinates_from_refinement(self, session, ref_session, each_plot_set_string, quantities, xy_quantities,
each_helix_stack_ids, each_helix_segments, each_helix_ref_segments, excluded_segments):
x_coord, y_coord, ref_x_coord, ref_y_coord, sel_x_coord, sel_y_coord, sel_ref_x_coord, sel_ref_y_coord = \
self.get_x_and_y_coordinates_from_helix_segments(each_helix_segments, each_helix_ref_segments,
excluded_segments)
if quantities == 'coordinates':
self.check_ref_values_and_raise_error(quantities, y_coord)
xy_quantities.append((each_plot_set_string, np.vstack([each_helix_stack_ids, ref_x_coord, ref_y_coord,
x_coord, y_coord, sel_ref_x_coord, sel_ref_y_coord])))
elif quantities == 'coordinates_subunit':
each_helix_su_stack_ids, sub_xcoord, sub_ycoord = self.get_refined_subunit_coordinates(session, ref_session,
each_helix_ref_segments)
each_helix_stack_ids, filled_x_coord, filled_y_coord, filled_ref_x_coord, filled_ref_y_coord = \
self.prepare_data_for_table_display(each_helix_stack_ids, x_coord, y_coord, sel_ref_x_coord,
sel_ref_y_coord, each_helix_su_stack_ids, sub_xcoord, sub_ycoord)
each_helix_su_stack_ids, sub_xcoord, sub_ycoord, filled_x_coord, filled_y_coord, filled_ref_x_coord, \
filled_ref_y_coord = self.add_picked_coordinates_of_exluded_segments(each_helix_stack_ids,
excluded_segments, x_coord, y_coord, each_helix_su_stack_ids, sub_xcoord, sub_ycoord, filled_x_coord,
filled_y_coord, filled_ref_x_coord, filled_ref_y_coord)
xy_quantities.append((each_plot_set_string, np.vstack([each_helix_su_stack_ids, sub_xcoord, sub_ycoord,
filled_x_coord, filled_y_coord, filled_ref_x_coord, filled_ref_y_coord])))
return xy_quantities
[docs] def get_refinement_parameters_no_local_averaging(self, each_plot_set_string, set_size, quantities, xy_quantities,
each_helix_stack_ids, each_helix_ref_segments, excluded_segments, distances):
if quantities in ['phi', 'theta', 'psi', 'x_shift', 'y_shift', 'normalized_in-plane_rotation',
'shift_along_helix', 'ccc_peak']:
y_plot = self.get_refined_quantities_from_segments(quantities, each_helix_ref_segments)
sel_y_plot = np.array(np.ma.masked_array(y_plot, mask=excluded_segments).tolist(), dtype=float)
if set_size == 'helix':
xy_quantities.append((each_plot_set_string, np.vstack([each_helix_stack_ids, distances, y_plot,
sel_y_plot])))
else:
xy_quantities.append((each_plot_set_string, np.vstack([each_helix_stack_ids, y_plot])))
return xy_quantities
[docs] def get_refinement_parameters_including_local_averaging(self, each_plot_set_string, set_size, quantities,
xy_quantities, each_helix_stack_ids, each_helix_ref_segments, excluded_segments, distances):
if quantities in ['in-plane_rotation', 'out-of-plane_tilt', 'shift_perpendicular_to_helix']:
if quantities == 'in-plane_rotation':
y_plot = [each_helix_ref_segment.inplane_angle for each_helix_ref_segment in each_helix_ref_segments]
avg_y_plot = [each_helix_ref_segment.lavg_inplane_angle for each_helix_ref_segment in \
each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'out-of-plane_tilt':
y_plot = [each_helix_ref_segment.out_of_plane_angle for each_helix_ref_segment in each_helix_ref_segments]
avg_y_plot = [each_helix_ref_segment.lavg_out_of_plane for each_helix_ref_segment in \
each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
elif quantities == 'shift_perpendicular_to_helix':
y_plot = [each_helix_ref_segment.helix_shift_x_A for each_helix_ref_segment in each_helix_ref_segments]
avg_y_plot = [each_helix_ref_segment.lavg_helix_shift_x_A for each_helix_ref_segment in \
each_helix_ref_segments]
self.check_ref_values_and_raise_error(quantities, y_plot)
sel_y_plot = np.array(np.ma.masked_array(y_plot, mask=excluded_segments).tolist(), dtype=float)
if set_size == 'helix':
xy_quantities.append((each_plot_set_string, np.vstack([each_helix_stack_ids, distances, y_plot,
sel_y_plot, avg_y_plot])))
else:
xy_quantities.append((each_plot_set_string, np.vstack([each_helix_stack_ids, y_plot])))
return xy_quantities
[docs] def get_refinement_parameters(self, each_plot_set_string, set_size, quantities, xy_quantities, each_helix_stack_ids,
each_helix_segments, each_helix_ref_segments, excluded_segments, distances):
if quantities in ['phi', 'theta', 'psi', 'x_shift', 'y_shift', 'normalized_in-plane_rotation',
'shift_along_helix', 'ccc_peak', 'in-plane_rotation', 'out-of-plane_tilt', 'shift_perpendicular_to_helix']:
xy_quantities = self.get_refinement_parameters_no_local_averaging(each_plot_set_string, set_size,
quantities, xy_quantities, each_helix_stack_ids, each_helix_ref_segments, excluded_segments, distances)
xy_quantities = self.get_refinement_parameters_including_local_averaging(each_plot_set_string, set_size,
quantities, xy_quantities, each_helix_stack_ids, each_helix_ref_segments, excluded_segments,
distances)
return xy_quantities
[docs] def get_specified_ref_quantities(self, session, ref_session, each_plot_set_string, set_size, quantities, xy_quantities,
each_helix_stack_ids, each_helix_segments, each_helix_ref_segments):
ref_stack_ids = np.array([each_helix_ref_segment.stack_id for each_helix_ref_segment in each_helix_ref_segments])
excluded_ref_segments = np.invert([bool(each_helix_ref_segment.selected) for each_helix_ref_segment in \
each_helix_ref_segments])
helix_stack_ids = np.array(each_helix_stack_ids)
excluded_segments = np.array(len(each_helix_stack_ids) * [False])
excluded_segments[helix_stack_ids.searchsorted(ref_stack_ids)] = excluded_ref_segments
xy_quantities = self.get_coordinates_from_refinement(session, ref_session, each_plot_set_string, quantities,
xy_quantities, each_helix_stack_ids, each_helix_segments, each_helix_ref_segments, excluded_segments)
distances = np.array([each_helix_segment.distance_from_start_A for each_helix_segment in each_helix_segments])
ref_distances = distances[helix_stack_ids.searchsorted(ref_stack_ids)]
xy_quantities = self.get_refinement_parameters(each_plot_set_string, set_size, quantities, xy_quantities,
ref_stack_ids, each_helix_segments, each_helix_ref_segments, excluded_ref_segments,
ref_distances)
return xy_quantities
[docs] def get_ref_quantities_per_set(self, spring_path, quantities):
self.log.fcttolog()
shutil.copy(spring_path, 'spring.db')
session, plot_sets = SegmentPlot().get_plot_set(self.set_size, self)
combined_included_segments = SegmentPlot().filter_segments_by_helix_and_micrograph_criteria(session, self)
labels = self.get_labels_according_to_ref_quantities(self.set_size, quantities)
ref_session, ref_cycle = self.get_refinement_cycle_id(self.infile)
xy_quantities = []
for each_plot_set in plot_sets:
each_helix_seg_ids, each_helix_segments = SegmentPlot().get_segment_ids_according_to_set_size(session,
self.set_size, each_plot_set)
if len(set(each_helix_seg_ids).intersection(combined_included_segments)) != 0:
each_set_id_label = SegmentPlot().generate_set_id_label_for_plot_and_filename(self.set_size,
each_plot_set)
each_helix_ref_segments = SegmentRefine3d().get_all_segments_from_refinement_cycle(ref_session,
ref_cycle, each_helix_seg_ids)
xy_quantities = self.get_specified_ref_quantities(session, ref_session, each_set_id_label, self.set_size, quantities,
xy_quantities, each_helix_seg_ids, each_helix_segments, each_helix_ref_segments)
log_info = SegmentPlot().prepare_log_string(labels, xy_quantities)
self.log.ilog(log_info)
return labels, xy_quantities
[docs]class SegRefine3dPlotVisualize(SegRefine3dPlotDataRetrieval):
[docs]class SegRefine3dPlot(SegRefine3dPlotVisualize):
[docs] def launch_interactive_plot_gui(self, figures, tables, labels):
labels = [labels for each_table in tables]
app = QApplication(sys.argv)
symexplor = SegmentPlotGui(self.feature_set, figures, tables, labels)
symexplor.show()
app.exec_()
[docs] def plot_desired_ref_quantities(self):
labels, xy_quantities = self.get_ref_quantities_per_set(self.spring_file, self.quantities)
self.log.plog(10)
figures, segplot = self.plot_ref_data_on_figure(xy_quantities, self.quantities, labels)
if not self.batch_mode:
all_labels = [labels for each_table in xy_quantities]
segplot.launch_interactive_plot_gui(self.feature_set, figures, xy_quantities, all_labels)
self.log.endlog(self.feature_set)
[docs]def main():
# Option handling
parset = SegRefine3dPlotPar()
mergeparset = OptHandler(parset)
######## Program
stack = SegRefine3dPlot(mergeparset)
stack.plot_desired_ref_quantities()
if __name__ == '__main__':
main()