Documented functions with links to source

Program to evaluate the performance of scanner by correlating adjacent rows and lines with each other from a pure noise image.

class scanrowcolcorr.ScanRowColCorrPar[source]

Class to initiate default dictionary with input parameters including help and range values and status dictionary

Methods

define_parameters_and_their_properties

define_program_states

set_mic_area

define_parameters_and_their_properties()[source]
define_program_states()[source]
set_mic_area(feature_set)[source]
class scanrowcolcorr.ScanRowColCorr(parset=None)[source]
  • Class that holds all functions required for computing row-to-row and column-to-column cross-correlation

  • __init__ Function to read in the entered parameter dictionary and load micrograph

  1. Usage: ScanRowColCorr(pardict)

  2. Input: pardict = OrderedDict of program parameters

Methods

evalcolcc([area])

  • Function to evaluate cross-correlation of adjacent columns

evalrowcc([area])

  • Function to evaluate cross-correlation of adjacent rows

visrowcolcc([row, ccrow, col, cccol])

  • Function to visualize results of row-to-row and column-to-column cross-correlation using matplotlib

perform_scanrowcolcorr

evalrowcc(area=None)[source]
  • Function to evaluate cross-correlation of adjacent rows

  1. Usage: rows, ccrows, output2 = evalrowcc(area)

  2. Input: area = area in percent to included in analysis of input micrograph, i.e. exclude label

  3. Output: list of rows, list of cross-correlation

evalcolcc(area=None)[source]
  • Function to evaluate cross-correlation of adjacent columns

  1. Usage: cols, cccols, output2 = evalrowcc(area)

  2. Input: area = area in percent to included in analysis of input micrograph, i.e. exclude label

  3. Output: list of columns, list of cross-correlation

visrowcolcc(row=None, ccrow=None, col=None, cccol=None)[source]
  • Function to visualize results of row-to-row and column-to-column cross-correlation using matplotlib

  1. Usage: output = visrowcolcc(row, ccrow, col, cccol)

  2. Input: row = list of rows, ccrow = list of row-to-row cross-correlation, col = list of columns, cccol = list of column-to-column correlation

  3. Output: output plot to saved to PDF, SVG, or PNG, TIF, JPG format

perform_scanrowcolcorr()[source]
scanrowcolcorr.main()[source]