Documented functions with links to source¶
Program to align segments from helical specimens with a restrained in-plane rotation of 0 or 180 +/- delta degrees
- 
class segmentalign2d_prep.SegmentAlign2dPar[source]¶
- Class to initiate default dictionary with input parameters including help and range values and status dictionary - Methods - add_mask_dimension_to_features - define_parameters_and_their_properties - define_program_states - set_frc_based_filter_option - set_iteration_count - set_reference_option - set_refinement_option 
- 
class segmentalign2d_prep.SegmentAlign2dPreparation(parset=None)[source]¶
- Class to prepare iterative alignment of segments 
 - Methods - >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - define_flow_of_alignment(pixelsize, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_bfactor_coefficients(bfactor, …[, …])- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_cosine_falloff(image_dimension, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_filter_function(…[, …])- Function to generate a filter function based on hyperbolic tangent (low-pass, high-pass or band-pass filters are possible) 
 - Function to read Fourier coefficients from text file 
 - average_stack - center_and_rotate_image - center_reference_images_by_alignment_to_avg - define_helix_or_particle_dimensions - get_align_info_nt - get_image_alignments_from_stack - get_image_list_named_tuple - log_mask_dimensions - prepare_alignment - prepare_empty_rings - prepare_mask - prepare_reference_stack - set_given_parameters - 
prepare_cosine_falloff(image_dimension, start_falloff, falloff_length)[source]¶
- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d >>> SegmentAlign2d().prepare_cosine_falloff(30, 7, 5) array([1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.9330127, 0.75 , 0.5 , 0.25 , 0.0669873, 0. , 0. , 0. ]) >>> SegmentAlign2d().prepare_cosine_falloff(50, 21, 10) array([1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.97974649, 0.92062677, 0.82743037, 0.70770751]) 
 - 
prepare_bfactor_coefficients(bfactor, pixelsize, image_dimension, cutoff_A=None)[source]¶
- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d >>> SegmentAlign2d().prepare_bfactor_coefficients(0, 1.0, 50) array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) >>> SegmentAlign2d().prepare_bfactor_coefficients(100, 1.0, 50) array([1. , 0.98920796, 0.95752564, 0.90696062, 0.84062374, 0.76241263, 0.67663385, 0.58761458, 0.49935179, 0.41523683, 0.33787832, 0.26902956, 0.20961139, 0.15981037, 0.1192258 , 0.08703837, 0.06217652, 0.04346276, 0.02972922, 0.0198987 , 0.01303291, 0.00835282, 0.00523842, 0.00321471, 0.00193045]) >>> SegmentAlign2d().prepare_bfactor_coefficients(-100, 1.0, 50) array([ 1. , 1.01090978, 1.04435845, 1.10258371, 1.18959286, 1.3116257 , 1.4779042 , 1.70179577, 2.00259621, 2.40826423, 2.95964534, 3.7170637 , 4.77073318, 6.25741626, 8.38744639, 11.48918606, 16.08324067, 23.00820047, 33.63694445, 50.25453012, 76.72884995, 119.72006788, 190.89740003, 311.06981145, 518.01282467]) >>> SegmentAlign2d().prepare_bfactor_coefficients(0, 1.0, 50, 4.0) array([1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.9330127, 0.75 , 0.5 , 0.25 , 0.0669873, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]) - >>> SegmentAlign2d().prepare_bfactor_coefficients(100, 1.0, 50, 4.0) array([1. , 0.98920796, 0.95752564, 0.90696062, 0.84062374, 0.76241263, 0.67663385, 0.58761458, 0.49935179, 0.41523683, 0.33787832, 0.26902956, 0.19557009, 0.11985778, 0.0596129 , 0.02175959, 0.00416504, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ]) >>> SegmentAlign2d().prepare_bfactor_coefficients(0.0, 5.0, 50, 12) array([1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.9330127, 0.75 , 0.5 , 0.25 ]) 
 - 
prepare_filter_function(high_pass_filter_option, high_pass_filter_cutoff, low_pass_filter_option, low_pass_filter_cutoff, pixelsize, image_dimension, filter_falloff=0.08, custom_filter_option=False, custom_filter_file=None, bfactor=0.0)[source]¶
- Function to generate a filter function based on hyperbolic tangent (low-pass, high-pass or band-pass filters are possible) 
 - #. Input: high_pass_filter_option, low_pass_filter_option, custom_filter_option: True or False, high_pass_filter_cutoff, low_pass_filter_cutoff: in 1/Angstrom, pixelsize: Angstrom/pixel, image_dimension: pixel, pixelsize, image_dimension: number of pixels filter_falloff: percent of pixels that make up smooth filter falloff custom_filter_file: recognizes last column as filter coefficient from provided text file - Output: list of filter coefficients as in Fourier pixels 
 - >>> from spring.segment2d.segmentalign2d import SegmentAlign2d >>> sa = SegmentAlign2d() >>> sa.prepare_filter_function(True, 0.02, True, 0.08, 5, 10, 0.08) [8.228716029901051e-06, 0.9999985361545757, 1.0, 0.9999985361545757, 4.1143580149505254e-06] - >>> sa.prepare_filter_function(True, 0.04, True, 0.06, 5, 50, 0.05) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.4444668511591772e-11, 0.0009282164067423437, 0.9999716817428013, 0.9999999999992549, 1.0, 1.0, 1.0, 0.9999999999992549, 0.9999716817428013, 0.0009282164067422882, 2.4444668511591772e-11, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] >>> sa.prepare_filter_function(True, 0.04, False, 0.06, 1.5, 50, 0.05, False, None, -100) [5.172734356748137e-05, 0.002565400437652817, 0.051660149853613654, 0.06479161976119088, 0.06716260031683237, 0.07014331907922618, 0.07396474866331282, 0.07875025482159989, 0.08465798862251377, 0.09189094570840427, 0.10070853850346509, 0.11144193977503326, 0.124514471444123, 0.14046877432184984, 0.16000315768767867, 0.18402045973674444, 0.21369406779466352, 0.2505576217346058, 0.2966276062917161, 0.3545718989002555, 0.42794293056222643, 0.521502262206533, 0.6416753173042158, 0.7971926179830757, 1.0] >>> sa.prepare_filter_function(True, 0.04, False, 0.06, 1.5, 50, 0.05, False, None, 100) [0.00083194331592229, 0.04086391086268285, 0.7994182049573009, 0.9554175714851911, 0.9257214133064412, 0.8864208155253327, 0.8406237416314447, 0.7895406073354527, 0.7344436719295907, 0.6766338461617276, 0.6173907887659099, 0.5579275104833195, 0.4993517885992762, 0.4426359119476192, 0.38859560599099563, 0.33787832130766693, 0.29096045886431027, 0.24815259496665634, 0.2096113871510978, 0.1753566038791111, 0.14529162554555938, 0.11922579924973033, 0.09689717267500671, 0.07799435496458187, 0.06217652402211632] >>> sa.prepare_filter_function(False, 0.04, False, 0.06, 1.0, 50, 0.05, False, None, 100) [1.0, 0.9892079619944574, 0.9575256423365532, 0.9069606178873836, 0.8406237433345053, 0.7624126296654683, 0.676633846161729, 0.5876145767179657, 0.4993517885992762, 0.4152368286818413, 0.33787832130766693, 0.26902955708479037, 0.2096113871510978, 0.15981036888569505, 0.11922579924973033, 0.08703836765622351, 0.06217652402211632, 0.04346276456589661, 0.02972921638615875, 0.01989870361309264, 0.013032907448509368, 0.008352818518081014, 0.0052384160278331, 0.0032147124638421238, 0.0019304541362277093] 
 - 
read_custom_filter_file(custom_filter_file=None, image_dimension=None)[source]¶
- Function to read Fourier coefficients from text file 
 
 - 
center_and_rotate_image(ref_center, file_name, file_info, search_range_pix, delta_psi, y_align=False)[source]¶
 - 
compute_binfactor_for_desired_resolution(desired_resolution, pixelsize)[source]¶
- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d >>> s = SegmentAlign2d() >>> resolutions = np.array([24.0, 12.0, 7.0, 3.0]) >>> s.compute_binfactor_for_desired_resolution(resolutions, 2.4) array([3, 2, 1]) >>> s.compute_binfactor_for_desired_resolution(resolutions, 1.2) array([7, 3, 2, 1]) >>> s.compute_binfactor_for_desired_resolution(resolutions, 1.372) array([6, 3, 2, 1]) 
 - 
define_flow_of_alignment(pixelsize, binfactor, iteration_count, x_range_A, y_range_A)[source]¶
- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d >>> SegmentAlign2d().define_flow_of_alignment(1.2, 2, 2, 50, 50) [align_info(iteration_id=0, pixelsize=8.4, binfactor=7, x_range=5.9523809523809526, y_range=5.9523809523809526), align_info(iteration_id=1, pixelsize=8.4, binfactor=7, x_range=5.9523809523809526, y_range=5.9523809523809526), align_info(iteration_id=0, pixelsize=3.5999999999999996, binfactor=3, x_range=5.9523809523809526, y_range=5.9523809523809526), align_info(iteration_id=1, pixelsize=3.5999999999999996, binfactor=3, x_range=5.9523809523809526, y_range=5.9523809523809526), align_info(iteration_id=0, pixelsize=2.4, binfactor=2, x_range=5.9523809523809526, y_range=5.9523809523809526), align_info(iteration_id=1, pixelsize=2.4, binfactor=2, x_range=5.9523809523809526, y_range=5.9523809523809526)] - >>> SegmentAlign2d().define_flow_of_alignment(5.0, 2, 5, 50, 50) [align_info(iteration_id=0, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=1, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=2, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=3, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=4, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0)] - >>> SegmentAlign2d().define_flow_of_alignment(5.0, 1, 5, 50, 50) [align_info(iteration_id=0, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=1, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=2, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=3, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=4, pixelsize=10.0, binfactor=2, x_range=5.0, y_range=5.0), align_info(iteration_id=0, pixelsize=5.0, binfactor=1, x_range=5.0, y_range=5.0), align_info(iteration_id=1, pixelsize=5.0, binfactor=1, x_range=5.0, y_range=5.0), align_info(iteration_id=2, pixelsize=5.0, binfactor=1, x_range=5.0, y_range=5.0), align_info(iteration_id=3, pixelsize=5.0, binfactor=1, x_range=5.0, y_range=5.0), align_info(iteration_id=4, pixelsize=5.0, binfactor=1, x_range=5.0, y_range=5.0)] 
 
- 
class segmentalign2d.SegmentAlign2dImagesToReferences(parset=None)[source]¶
- Methods - compute_binfactor_for_desired_resolution(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - define_flow_of_alignment(pixelsize, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_bfactor_coefficients(bfactor, …[, …])- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_cosine_falloff(image_dimension, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_filter_function(…[, …])- Function to generate a filter function based on hyperbolic tangent (low-pass, high-pass or band-pass filters are possible) 
 - read_custom_filter_file([…])- Function to read Fourier coefficients from text file 
 - average_stack - calculate_averages - center_and_rotate_image - center_reference_images_by_alignment_to_avg - compute_average_and_normalize - compute_variance_and_normalize - define_helix_or_particle_dimensions - get_align_info_nt - get_image_alignments_from_stack - get_image_list_named_tuple - log_mask_dimensions - prepare_alignment - prepare_empty_rings - prepare_mask - prepare_reference_stack - put_random_image_in_reference_image_container - set_given_parameters 
- 
class segmentalign2d.SegmentAlign2dAlign(parset=None)[source]¶
- Methods - compute_binfactor_for_desired_resolution(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - define_flow_of_alignment(pixelsize, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - log_alignment_params(previous_params, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - Function to filter low-resolution reference image with a hyperbolic tangent that was fitted against fourier ring correlation 
 - prepare_bfactor_coefficients(bfactor, …[, …])- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_cosine_falloff(image_dimension, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_filter_function(…[, …])- Function to generate a filter function based on hyperbolic tangent (low-pass, high-pass or band-pass filters are possible) 
 - read_custom_filter_file([…])- Function to read Fourier coefficients from text file 
 - align_images_to_references - average_stack - calculate_averages - center_and_rotate_image - center_reference_images_by_alignment_to_avg - compute_average_and_normalize - compute_variance_and_normalize - define_helix_or_particle_dimensions - define_parameters_for_alignment - determine_odd_and_even_average_including_variance - generate_reference_rings_from_image - get_align_info_nt - get_image_alignments_from_stack - get_image_list_named_tuple - log_mask_dimensions - make_rings_and_prepare_cimage_header - perform_coarse_restrained_alignment - perform_fine_alignment - prepare_alignment - prepare_empty_rings - prepare_mask - prepare_reference_images_for_alignment - prepare_reference_stack - put_random_image_in_reference_image_container - set_given_parameters - 
low_pass_filter_reference_according_to_frc(total_average, frc_line)[source]¶
- Function to filter low-resolution reference image with a hyperbolic tangent that was fitted against fourier ring correlation 
 - Prepare the reference in 2D alignment, i.e., low-pass filter and center. Input: list ref_data 2 - raw average 3 - fsc result Output: filtered, centered, and masked reference image apply filtration (FRC) to reference image: 
 - 
generate_reference_rings_from_image(reference_image, polar_interpolation_parameters, ring_weights, image_dimension, full_circle_mode='F')[source]¶
 - 
make_rings_and_prepare_cimage_header(image_dimension, polar_interpolation_parameters, ring_weights, reference_image)[source]¶
 - 
limit_search_range_based_on_previous_alignment(local_prev_shift_x, x_limit, fine_x_range)[source]¶
- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d >>> s = SegmentAlign2d() >>> s.limit_search_range_based_on_previous_alignment(2.75, 3, 0.5) 2.5 >>> s.limit_search_range_based_on_previous_alignment(2.25, 3, 0.5) 2.25 >>> s.limit_search_range_based_on_previous_alignment(-2.75, 3, 0.5) -2.5 >>> s.limit_search_range_based_on_previous_alignment(2.05, 3, 3) 0 >>> s.limit_search_range_based_on_previous_alignment(2.05, 5, 3) 2 
 - 
perform_coarse_restrained_alignment(alignment_stack_name, ringref, polar_interpolation_parameters, alignment_info, refine_locally, full_circle_mode, align_img, search_ranges, search_limits, translation_step, center_x, center_y, each_image)[source]¶
 - 
perform_fine_alignment(ringref, polar_interpolation_parameters, alignment_info, full_circle_mode, align_img, search_ranges, search_limits, translation_step, center_x, center_y, dummy_transform, image_nt, determined_params, each_image, local_prev_shift_x, local_prev_shift_y)[source]¶
 - 
determine_odd_and_even_average_including_variance(align_img, reference_stack, assigned_images, each_image, angt, refined_shift_x, refined_shift_y, mirror, matched_reference)[source]¶
 - 
log_alignment_params(previous_params, determined_params)[source]¶
- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d >>> s = SegmentAlign2d() >>> param_nt = s.get_image_list_named_tuple() >>> a = b = [param_nt(1, 1, 3, 0, 0, 0, 0, 1)] >>> SegmentAlign2d().log_alignment_params(a, b) ' stack_id local_id ref_id shift_x shift_y inplane_angle peak mirror cycle\n---------- ---------- -------- --------- --------- --------------- ------ -------- ----------\n 1 1 3 0 0 0 0 1 previous\n 1 1 3 0 0 0 0 1 determined' 
 
- 
class segmentalign2d.SegmentAlign2dPostAlign(parset=None)[source]¶
- Methods - compute_binfactor_for_desired_resolution(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - define_flow_of_alignment(pixelsize, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - limit_search_range_based_on_previous_alignment(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - log_alignment_params(previous_params, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - low_pass_filter_reference_according_to_frc(…)- Function to filter low-resolution reference image with a hyperbolic tangent that was fitted against fourier ring correlation 
 - prepare_bfactor_coefficients(bfactor, …[, …])- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_cosine_falloff(image_dimension, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_filter_function(…[, …])- Function to generate a filter function based on hyperbolic tangent (low-pass, high-pass or band-pass filters are possible) 
 - read_custom_filter_file([…])- Function to read Fourier coefficients from text file 
 - align_images_to_references - average_stack - calculate_averages - center_and_rotate_image - center_reference_images_by_alignment_to_avg - compute_average_and_normalize - compute_variance_and_normalize - define_helix_or_particle_dimensions - define_parameters_for_alignment - determine_odd_and_even_average_including_variance - filter_references_if_requested - generate_reference_rings_from_image - generate_temp_bin_name - get_align_info_nt - get_image_alignments_from_stack - get_image_list_named_tuple - log_mask_dimensions - make_rings_and_prepare_cimage_header - pass_alignment_parameters_from_reference_groups_to_images - perform_coarse_restrained_alignment - perform_fine_alignment - prepare_alignment - prepare_empty_rings - prepare_mask - prepare_reference_images_for_alignment - prepare_reference_stack - put_random_image_in_reference_image_container - set_given_parameters - write_out_aligned_averages_and_adapt_scales_from_previous_cycle 
- 
class segmentalign2d.SegmentAlign2d(parset=None)[source]¶
- Methods - compute_binfactor_for_desired_resolution(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - define_flow_of_alignment(pixelsize, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - limit_search_range_based_on_previous_alignment(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - log_alignment_params(previous_params, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - low_pass_filter_reference_according_to_frc(…)- Function to filter low-resolution reference image with a hyperbolic tangent that was fitted against fourier ring correlation 
 - prepare_bfactor_coefficients(bfactor, …[, …])- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_cosine_falloff(image_dimension, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_filter_function(…[, …])- Function to generate a filter function based on hyperbolic tangent (low-pass, high-pass or band-pass filters are possible) 
 - read_custom_filter_file([…])- Function to read Fourier coefficients from text file 
 - align_images_to_references - average_stack - bin_references_and_images - calculate_averages - center_and_rotate_image - center_reference_images_by_alignment_to_avg - cleanup_segmentalign2d - compute_average_and_normalize - compute_variance_and_normalize - define_helix_or_particle_dimensions - define_parameters_for_alignment - define_previous_params_and_refine_locally - determine_odd_and_even_average_including_variance - filter_references_if_requested - generate_aligned_output_file_and_update_header_of_input - generate_reference_rings_from_image - generate_temp_bin_name - get_align_info_nt - get_image_alignments_from_stack - get_image_list_named_tuple - log_mask_dimensions - make_rings_and_prepare_cimage_header - pass_alignment_parameters_from_reference_groups_to_images - perform_coarse_restrained_alignment - perform_fine_alignment - perform_iterative_alignment - perform_segmentalign2d - prepare_alignment - prepare_empty_rings - prepare_mask - prepare_reference_images_for_alignment - prepare_reference_stack - put_random_image_in_reference_image_container - set_given_parameters - write_aligned_unfiltered_averages_and_variances - write_out_aligned_averages_and_adapt_scales_from_previous_cycle - 
define_previous_params_and_refine_locally(images_info, determined_params, previous_binfactor, align_id, each_info)[source]¶
 - 
bin_references_and_images(alignment_stack_name, reference_stack_name, reference_stack, alignment_info, image_ids, align_id, previous_binfactor)[source]¶
 
Created on Apr 14, 2011
@author: sachse
- 
class segmentalign2d_mpi.SegmentAlign2dMpiPreparation(parset=None)[source]¶
- class that holds functions for MPI functions of segmentalign 
 - Methods - compute_binfactor_for_desired_resolution(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - define_flow_of_alignment(pixelsize, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - limit_search_range_based_on_previous_alignment(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - log_alignment_params(previous_params, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - low_pass_filter_reference_according_to_frc(…)- Function to filter low-resolution reference image with a hyperbolic tangent that was fitted against fourier ring correlation 
 - prepare_bfactor_coefficients(bfactor, …[, …])- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_cosine_falloff(image_dimension, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_filter_function(…[, …])- Function to generate a filter function based on hyperbolic tangent (low-pass, high-pass or band-pass filters are possible) 
 - read_custom_filter_file([…])- Function to read Fourier coefficients from text file 
 - >>> from collections import namedtuple - align_images_to_references - average_stack - bin_references_and_images - calculate_averages - center_and_rotate_image - center_reference_images_by_alignment_to_avg - cleanup_segmentalign2d - compute_average_and_normalize - compute_variance_and_normalize - define_helix_or_particle_dimensions - define_parameters_for_alignment - define_previous_params_and_refine_locally - determine_odd_and_even_average_including_variance - filter_references_if_requested - generate_aligned_output_file_and_update_header_of_input - generate_reference_rings_from_image - generate_temp_bin_name - get_align_info_nt - get_image_alignments_from_stack - get_image_list_named_tuple - log_mask_dimensions - make_rings_and_prepare_cimage_header - pass_alignment_parameters_from_reference_groups_to_images - perform_coarse_restrained_alignment - perform_fine_alignment - perform_iterative_alignment - perform_segmentalign2d - prepare_alignment - prepare_alignment_mpi - prepare_empty_rings - prepare_mask - prepare_reference_images_for_alignment - prepare_reference_stack - put_random_image_in_reference_image_container - set_given_parameters - write_aligned_unfiltered_averages_and_variances - write_out_aligned_averages_and_adapt_scales_from_previous_cycle - 
update_local_ids_in_list_of_named_tuple(named_tuples)[source]¶
- >>> from collections import namedtuple >>> info = namedtuple('info', 'stack_id local_id') >>> l = [info(10, 10), info(11, 11)] >>> from spring.segment2d.segmentalign2d_mpi import SegmentAlign2dMpi >>> SegmentAlign2dMpi().update_local_ids_in_list_of_named_tuple(l) [info(stack_id=10, local_id=0), info(stack_id=11, local_id=1)] 
 
- 
class segmentalign2d_mpi.SegmentAlign2dMpi(parset=None)[source]¶
- Methods - compute_binfactor_for_desired_resolution(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - define_flow_of_alignment(pixelsize, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - limit_search_range_based_on_previous_alignment(…)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - log_alignment_params(previous_params, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - low_pass_filter_reference_according_to_frc(…)- Function to filter low-resolution reference image with a hyperbolic tangent that was fitted against fourier ring correlation 
 - >>> from spring.segment2d.segmentalign2d_mpi import SegmentAlign2dMpi - Function to sum up even and odd images from reference stack 
 - prepare_bfactor_coefficients(bfactor, …[, …])- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_cosine_falloff(image_dimension, …)- >>> from spring.segment2d.segmentalign2d import SegmentAlign2d - prepare_filter_function(…[, …])- Function to generate a filter function based on hyperbolic tangent (low-pass, high-pass or band-pass filters are possible) 
 - read_custom_filter_file([…])- Function to read Fourier coefficients from text file 
 - update_local_ids_in_list_of_named_tuple(…)- >>> from collections import namedtuple - align_images_to_references - average_stack - bin_references_and_images - calculate_averages - center_and_rotate_image - center_reference_images_by_alignment_to_avg - cleanup_segmentalign2d - compute_average_and_normalize - compute_variance_and_normalize - define_helix_or_particle_dimensions - define_parameters_for_alignment - define_previous_params_and_refine_locally - determine_odd_and_even_average_including_variance - filter_references_if_requested - gather_assigned_images_from_cpus_to_common_assigment_on_root - gather_averages_from_cpus_to_common_reference_stack_on_root - generate_aligned_output_file_and_update_header_of_input - generate_reference_rings_from_image - generate_temp_bin_name - get_align_info_nt - get_image_alignments_from_stack - get_image_list_named_tuple - log_mask_dimensions - make_rings_and_prepare_cimage_header - pass_alignment_parameters_from_reference_groups_to_images - perform_coarse_restrained_alignment - perform_fine_alignment - perform_iterative_alignment - perform_iterative_alignment_mpi - perform_segmentalign2d - perform_segmentalign2d_mpi - prepare_alignment - prepare_alignment_mpi - prepare_empty_rings - prepare_mask - prepare_reference_images_for_alignment - prepare_reference_stack - put_random_image_in_reference_image_container - set_given_parameters - write_aligned_unfiltered_averages_and_variances - write_out_aligned_averages_and_adapt_scales_from_previous_cycle - 
mpi_reduce_reference_stack(distributed_odd_averages, distributed_even_averages, distributed_variances, distributed_image_counts, reference_stack)[source]¶
- Function to sum up even and odd images from reference stack 
 
 - 
mpi_gather_assigned_images(distributed_assignments, reference_image_count)[source]¶
- >>> from spring.segment2d.segmentalign2d_mpi import SegmentAlign2dMpi >>> distributed_assignments = [[[0, 2], [1]], [[4], [3]], [[5, 6, 7], []], [[8, 9], []]] >>> SegmentAlign2dMpi().mpi_gather_assigned_images(distributed_assignments, 2) [[0, 2, 4, 5, 6, 7, 8, 9], [1, 3]] 
 
